Quick Guide to Innoslate’s Ontology

Innoslate uses the Lifecycle Modeling Language (LML) ontology as the basis for the tool’s database schema. For those new to the word “ontology,” it’s simply the set of classes and relationships between them that form the basis for capturing the information needed. We look at this in a simple Entity-Relationship-Attribute (ERA) form. This formulation has a simple parallel to the way we look at most languages: entities represent nouns; relationships represent verbs; attributes on the entity represent adjectives; and attributes on relationships represent adverbs.

LML contains twelve (12) entity classes and eight (8) subclasses. They represent the basic elements of information needed to describe almost any system. The figure below shows how they can be grouped to create the models needed for this description.

Most of these entity classes have various ways to visualize the information, which are commonly called models or diagrams. The benefit of producing the visualizations using this ontology means that when you create one model, other models that use the same information will automatically have that information available.

All these entities are linked to one another through the relationships. The primary relationships are shown below.

 

This language takes a little getting used to, like any other language. For example, you might be used to referring to something functional as a Function or Activity. These are both “types” of Actions in LML and implemented as labels in Innoslate. Similarly, you may be used to using different relationship names for parents and children for different entity classes. However, by using the same verbs for the parent-child relationships you can avoid confusion in having to remember all the different verbs.

You still might need other ontological additions. LML was meant to be the “80% solution.” You should look very closely at the ontology, as often you only need to add types (labels) or an attribute here and there. Hopefully, you will rarely need to add new classes and relationships. If you do add new classes, try to do so as subclasses to existing ones, so that you inherit the diagrams as well. For example, when the Innoslate development team added the new Test Center, they decided they needed to extend the Action class. This enables the TestCase class to inherit the Action class and other functional diagrams, as well as the status, duration, and other attributes that were important.

Hopefully, you can see the benefits of using LML as the basis for Innoslate’s schema. It was designed to be:

  • Broad (covers the entire lifecycle – technical and programmatic)
  • Ontology-based (enables translation from LML to other languages and back)
  • All the capabilities of SysML (with LML v1.1 extensions) and DoDAF
  • Simple structure
  • Useful for stakeholders across the entire lifecycle

For more information, see www.lifeyclemodeling.org and visit the Help Center at help.innoslate.com.

Innoslate’s Ontology Webinar

Live Webinar June 6th at 2:30 pm EST

Everyone talks about “data-centricity,” but what does that mean in practical terms. It means that you have to have a well defined ontology that can capture the information needed to describe the architecture or system you work with or want to create. An ontology is simply the taxonomy of entity classes (bins of information) and how those classes are related to each other.

You’ll learn a relatively new ontology, the Lifecycle Modeling Language (LML). LML provides the basis for Innoslate’s database schema. In this webinar, we will discuss each entity class and why it was developed. Dr. Steven Dam, who is the Secretary of the LML Steering Committee, will present the details of the language and how it relates to other ontologies/languages, such as the DoDAF MetaModel 2.0 and SysML. He will also discuss the ways to visualize this information to enhance understanding of the information and how to use that information to make decisions about the architecture or system.

Join us live on July 6th at 2:30 pm EST.

After July 6th 2017, watch the recording here.

Do Frameworks Really Work?

Over the past 20 years, we have been using various “Frameworks” to capture information about architectures and systems. Beginning perhaps with the Zachman Framework, which is still one of the most successful. The Zachman Framework is timeless for this reason: it forced us to think about the standard interrogatives (Who, What, When, Why, Where, and How) and different perspectives (Executive, Business Management, Architect, Engineer, and Technician) as applied to the enterprise. The idea was to build models in each area, starting with simple lists and working into detailed models of the systems at a component level.

Other frameworks followed, included the DoD Architecture Framework (DoDAF – which came from the C4ISR Architecture Framework), the Ministry of Defence Architecture Framework (MODAF), the NATO Architecture Framework, and many others. All these Frameworks were built on the idea that the information could be easily “binned” into these boxes, but as we know many of the models in these Frameworks included maps between different data elements, such as the CV-6 from DoDAF that maps Capabilities to Operational Activities. Recently, the Object Management Group (OMG) and others have been trying to push out a Unified Architecture Framework (UAF) that combines the models from many of these other frameworks into a single, very large framework. OMG is also responsible for developing the Unified Modeling Language (UML), Systems Modeling Language (SysML), and the Unified Profile for DoDAF and MODAF (UPDM).

All of these framework and languages are ways to capture information about a system or enterprise and show them as a set of data, often as a picture or model with two or more pieces of information in the model. An example is the DoDAF OV-5a, which is a functional hierarchy of Operational Activities, which only contains a single entity class and the decomposition relationship between those entities. Another example is the OV-5b, which shows the Operational Activities and the “Resource Flows” (which many of us recognize as inputs and outputs to/from the Operational Activities) between them. Thus, we have now two entity classes and the associated relationships between them. Obviously, the information in the CV-6, OV-5a, and OV-5b overlap in that the same Operational Activities need to show up in each of these models. But how many of these different models would we need to complete describe a system or enterprise?

An alternative way to capture information is to use an ontology (and the DoDAF 2.02 is based on a rather large ontology – the DoDAF MetaModel 2.0 or DM2) that captures the information in a finite number of classes (or bins) and a set of relationships between these classes. The classes and relationships can have attributes associated with them, which are also pieces of information. At the ontology level, all we see is a mass of data, so most of us want to see the pictures, and most architects and system engineers seem to prefer this approach.

An alternative to the DM2 is the Lifecycle Modeling Language (LML), which contains both an ontology and a set of diagrams to capture the necessary technical and program information associated with a project. This language uses an ontology that appears simpler than the DM2, but actually hides the complexity through the large number of relationships between entities and the fact that the relationships can have attributes associated with them. LML purports to be the 80% solution to the ontology, meaning that you may decide to extend it to meet your specific needs. But let’s just stick with it. LML has 20 classes of entities, and each entity class has a number of relationships associated with it (over 40 in total). So, if we ignore the attributes, we have over 20(20-1)/2=190 combinations of information possible. Does that mean I need 190 or more diagrams to visualize all this information, perhaps – it could be less, but it could be more. Can we really have that many different diagrams to represent this information, which is what a Framework would require? And of course, if we add in all the attributes to both the classes and relationships, then we are trying to display a lot more information than this.

So, Frameworks are a useful starting point, which is how John Zachman uses his framework, and it may be enough for enterprise architecture, but it’s not a panacea for all of systems engineering problems. Sooner or later as we want to decompose the system to a level we can determine what to buy or build, as well as manage these kinds of projects, you likely will need to use a more robust approach. LML and this kind of ontology makes it much easier to capture, manage, and visualize the information. See for yourself. Go to www.innoslate.com and try out the tool that uses LML for free. Explore the Schema Editor to see the entire ontology. Play with the “Getting Started” panel examples. I think once you do you will find this approach works much better than the Frameworks. In addition, Innoslate has a “DoDAF Dashboard” that enables you to create DoDAF models directly from the dashboard, so if that’s what you are more familiar with, you will find it the easiest to get started. Notice that may of the other projects are automatically populated with the information from the other models. That’s because Innoslate reuses that information to automatically create the other views!